Distributed agent discovery and registration system
Central repository for agent capabilities and metadata
Intelligent search and matching algorithms
Optimal agent selection and traffic distribution
Real-time agent status and performance tracking
{
"registration_info": {
"agent_id": "agent_data_processor_001",
"registration_time": "2025-08-03T12:00:00Z",
"last_heartbeat": "2025-08-03T12:05:00Z",
"status": "ACTIVE",
"registry_version": "1.0"
},
"agent_metadata": {
"name": "Advanced Data Processor",
"version": "2.1.0",
"vendor": "AI Solutions Inc",
"description": "High-performance data processing agent",
"tags": ["data", "processing", "analytics", "ml"]
},
"capabilities": {
"services": [
{
"service_id": "text_analysis",
"name": "Text Analysis Service",
"input_types": ["text/plain", "application/json"],
"output_types": ["application/json"],
"max_input_size": "10MB",
"avg_processing_time": "2.5s"
}
],
"technical_specs": {
"supported_protocols": ["HTTP", "WebSocket"],
"authentication": ["Bearer", "API_Key"],
"rate_limits": {
"requests_per_minute": 1000,
"concurrent_requests": 50
}
}
},
"network_info": {
"primary_endpoint": "https://agent001.example.com/api",
"health_endpoint": "https://agent001.example.com/health",
"load_balancer_group": "data_processors",
"geographic_region": "us-east-1"
}
}
Agent discovers registry endpoint and initiates registration
Agent submits comprehensive capability information
Registry validates agent capabilities and connectivity
Continuous health checks and performance monitoring
Agent becomes available for discovery and task routing
Exact and fuzzy matching of required capabilities
Historical performance and reliability metrics
Latency-aware agent selection
class AgentDiscovery:
def find_agents(self, requirements):
# Multi-criteria agent selection
candidates = self.registry.search({
'capabilities': requirements.services,
'performance': {'min_score': 0.8},
'availability': {'status': 'ACTIVE'},
'location': {'region': requirements.region}
})
# Intelligent scoring algorithm
for agent in candidates:
score = self.calculate_score(agent, requirements)
agent.match_score = score
return sorted(candidates, key=lambda x: x.match_score, reverse=True)
def calculate_score(self, agent, requirements):
capability_score = self.match_capabilities(agent, requirements)
performance_score = agent.metrics.avg_performance
availability_score = agent.health.uptime_ratio
latency_score = self.calculate_latency_score(agent, requirements)
return (capability_score * 0.4 +
performance_score * 0.3 +
availability_score * 0.2 +
latency_score * 0.1)